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Introduction
In this article I will show you an elegant algorithm to generate an arbitrary mathematical combination element from a given
lexicographical index. Huh? If you stick with me, I will explain exactly what that means. I think you'll find the algorithm quite
interesting and potentially a valuable addition to your developer skill set.

I recently wrote an article in MSDN Magazine (http://msdn.microsoft.com/msdnmag/issues/04/07/TestRun/default.aspx) that
describes mathematical combinations, implements a Combination class with C#, and explains how combinations can be useful for
software test automation. Combinations have an enormous number of uses in a wide range of areas beyond software testing.
This short article essentially extends the ideas and code in the MSDN Magazine article. In particular, I will describe a method
Combination.Element() that accepts as input an index value and returns the appropriate Combination object.

The best way to start the explanation is with a screen shot. Figure 1 shows the output resulting from a console application that
demonstrates where I'm headed. The code that generated the output in Figure 1 is listed in the code snipped below.

Figure 1. Combinations demonstration

A mathematical combination is a subset of size k from a set of integers from 0 to n-1, where order does not matter. In the
program that I ran to get the output shown in Figure 1, the value of n is set to 5 and the value of k is set to 3. When listed in
lexicographical order, the first combination element is { 0 1 2 } and the last element is { 2 3 4 }. When using lexicographical order,
combination elements increase in magnitude if you think of the elements as numbers. Notice that I don't list an element like { 1 0
2 } because it is the same as { 0 1 2 }.

Combination c = new Combination(5,3);

http://download.microsoft.com/download/0/b/1/0b13c3d5-1bb7-4d69-8c3e-ccc2666241d1/combinations.msi
http://msdn.microsoft.com/msdnmag/issues/04/07/testrun/default.aspx


If you look at the previous code block, you'll see that I call a method Combination.Element() that returns a combination
element for a specified lexicographical index. The purpose of this article is to describe the Element() method. The code above also
shows that I use a method Choose(n,k), which returns the total number of combination elements for given n and k values, and a
Successor() method that returns the next lexicographical combination element for a given element. The combination constructor,
Choose() and Successor() methods, are explained in detail in the MSDN article at
http://msdn.microsoft.com/msdnmag/issues/04/07/TestRun/default.aspx, but I have re-listed their code in the code block below
for your reference.

Console.WriteLine("\nWith n=5 and k=3 there are " + Combination.Choose(5,3) + " combination e
lements.");

Console.WriteLine("\nThe elements are:");
for (int i = 0 ; i < 10; ++i)
{
  Console.WriteLine(i + ": " + c.ToString());
  c = c.Successor();
}

c = new Combination(5,3);
Console.Write("\nEnter an index: ");
int m = int.Parse(Console.ReadLine());
Console.WriteLine("That combination element is: " + c.Element(m));

public class Combination
{
  private long n = 0;
  private long k = 0;
  private long[] data = null;

  public Combination(long n, long k)
  {
    if (n < 0 || k < 0) // normally n >= k
      throw new Exception("Negative parameter in constructor");

    this.n = n;
    this.k = k;
    this.data = new long[k];
    for (long i = 0; i < k; ++i)
      this.data[i] = i;
  } // Combination(n,k)

  public Combination(long n, long k, long[] a) // Combination from a[]
  {
    if (k != a.Length)
      throw new Exception("Array length does not equal k");

    this.n = n;
    this.k = k;
    this.data = new long[k];
    for (long i = 0; i < a.Length; ++i)
      this.data[i] = a[i];

    if (!this.IsValid())
      throw new Exception("Bad value from array");
    } // Combination(n,k,a)

  public bool IsValid()
  {
    if (this.data.Length != this.k)
      return false; // corrupted

    for (long i = 0; i < this.k; ++i)
    {
      if (this.data[i] < 0 || this.data[i] > this.n - 1)
        return false; // value out of range

http://msdn.microsoft.com/msdnmag/issues/04/07/testrun/default.aspx


      for (long j = i+1; j < this.k; ++j)
        if (this.data[i] >= this.data[j])
          return false; // duplicate or not lexicographic
    }

    return true;
  } // IsValid()

  public override string ToString()
  {
    string s = "{ ";
    for (long i = 0; i < this.k; ++i)
      s += this.data[i].ToString() + " ";
    s += "}";
    return s;
  } // ToString()

  public Combination Successor()
  {
    if (this.data[0] == this.n - this.k)
      return null;

    Combination ans = new Combination(this.n, this.k);

    long i;
    for (i = 0; i < this.k; ++i)
      ans.data[i] = this.data[i];
 
    for (i = this.k - 1; i > 0 && ans.data[i] == this.n - this.k + i; --i)
      ;
 
    ++ans.data[i];

    for (long j = i; j < this.k - 1; ++j)
      ans.data[j+1] = ans.data[j] + 1;

    return ans;
  } // Successor()

  public static long Choose(long n, long k)
  {
    if (n < 0 || k < 0)
      throw new Exception("Invalid negative parameter in Choose()"); 
    if (n < k)
      return 0;  // special case
    if (n == k)
      return 1;

    long delta, iMax;

    if (k < n-k) // ex: Choose(100,3)
    {
      delta = n-k;
      iMax = k;
    }
    else         // ex: Choose(100,97)
    {
      delta = k;
      iMax = n-k;
    }

    long ans = delta + 1;

    for (long i = 2; i <= iMax; ++i)
    {
      checked { ans = (ans * (delta + i)) / i; } 
    }



Let me explain why a Combination.Element() method is useful. An obvious technique to get the mth element is to start with
the first element and then iterate, calling a successor method or code, m times. A typical implementation of this naive approach
might look like:

This implementation yields the correct combination element { 0, 2, 4 }. So, what is the problem? It's not hard for you to guess that
this technique is bad when the value of m is large. And unfortunately m is often very, very large. For example, if we have a
combination of n = 200 items taken k = 10 at a time, there are 22,451,004,309,013,280 possible elements. Using the naive
looping technique above, I calculated element [999,999,999,999] for n = 200 and k = 10 on a reasonably fast desktop machine
and it took over 100 hours—not very good performance.

I discovered a very helpful mathematical idea that I call the combinadic of a number, which allows me to code an Element()
method that calculates the [999,999,999,999] element for n = 200 and k = 10 in approximately 1 second.

The Combinadic of an Integer
The combinadic of an integer is an alternative representation of the number based on combinations that maps nicely to a
combination element. Consider for example the number 27. If we fix n = 7 and k = 4, it turns out that the combinadic of 27 is ( 6 5
2 1 ). This means that:

With n = 7 and k = 4, any number z between 0 and 34 (the total number of combination elements for n and k) can be uniquely
represented as:

This representation is where n > c1 > c2 > c3 > c4. Notice that n is analogous to the base because all combinadic digits are
between 0 and n-1 (just like all digits in ordinary base 10 are between 0 and 9). The k value determines the number of terms in
the combinadic. The combinadic of a number can be calculated fairly quickly.

Let me show you a second example of the combinadic of a number, but this time I'll show you how to calculate it. Suppose we
have the integer 8, with n and k set to 7 and 4 respectively, and we want the combinadic. The combinadic of 8 will have the form:

We first determine the value of c1. We try 6 (the largest number less than n = 7) and get Choose(6,4) = 15, which is too much
because we're over 8. Next, we try 5 and get Choose(5,4) = 5, which is less than 8, so bingo, c1 = 5. Now we have used up 5 of
the original number 8 so we have 3 left to account for. To determine the value of c2, we try 4 (the largest number less than the 5
we got for c1), but get Choose(4,3) = 4, which is barely too much. Working down we get to 3 and Choose(3,3) = 1, so c2 = 3.
We used up 1 of the remaining 3 we had to account for, so we have 2 left to consume. Using the same ideas we'll get c3 = 2 with
Choose(2,2) = 1, so we have 1 left to account for. And then we'll find that c4 = 1 because Choose(1,1) = 1. Putting our four c
values together we conclude that the combinadic of 8 with n = 7 and k = 4 is ( 5 3 2 1 ).

    return ans;
  } // Choose()

} // Combination class

// standard but naive technique to generate the mth element
Console.WriteLine("Element [4] of a combination with n=5 and k=3 is: ");
Combination c = new Combination(5,3);
long m = 4;
for (long i = 1; i <= m; ++i)
{
  c = c.Successor();
}
Console.WriteLine(c.ToString());

27 = Choose(6,4) + Choose(5,3) + Choose(2,2) + Choose(1,1).

z = Choose(c1,4) + Choose(c2,3) + Choose(c3,2) + Choose(c4,1)

8 = Choose(c1,4) + Choose(c2,3) + Choose(c3,2) + Choose(c4,1)



Well, this is all rather strange and perhaps somewhat interesting but what makes the combinadic useful is that the combinadic of
a number indirectly maps to its lexicographic element and gives us a way to quickly compute an arbitrarily specified combination
element.

The Combination.Element() Method
Before I show you how to use the combinadic of a number to determine the mth lexicographical element of a combination, I need
to explain the idea of the dual of each lexicographic index. Suppose n = 7 and k = 4. There are Choose(7,4) = 35 combination
elements, indexed from 0 to 34. The dual indexes are the ones on opposite ends so to speak: indexes 0 and 34 are duals, indexes 1
and 33 are duals, indexes 2 and 32, and so forth. Notice that each pair of dual indexes sum to 34, so if we know any index it is
easy to find its dual.

Now, continuing the first example above for the number 27 with n = 7 and k = 4, suppose we are able to find the combinadic of
27 and get ( 6 5 2 1 ). Now suppose we subtract each digit in the combinadic from n-1 = 6 and get ( 0 1 4 5 ). Amazingly, this
gives us the combination element [7], the dual index of 27! Putting these idea together we have an elegant algorithm to
determine an arbitrarily specified combination element for given n and k values. To find the combination element for index m,
first find its dual and call it x. Next, find the combinadic of x. Then subtract each digit of the combinadic of x from n-1 and the
result is the mth lexicographic combination element. The table below shows the relationships among m, the dual of m,
Comination.Element(m), the combinadic of m, and (n-1) - ci for n=5 and k=3.

With all the parts of the puzzle in place, I implemented the Element() method using C# as shown in the following code snippet:

m  dual(m)  Element(m)  combinadic(m)  (n-1) - ci
=================================================
0    9      { 0 1 2 }   ( 2 1 0 )      ( 2 3 4 )
1    8      { 0 1 3 }   ( 3 1 0 )      ( 1 3 4 )
2    7      { 0 1 4 }   ( 3 2 0 )      ( 1 2 4 )
3    6      { 0 2 3 }   ( 3 2 1 )      ( 1 2 3 )
4    5      { 0 2 4 }   ( 4 1 0 )      ( 0 3 4 )
5    4      { 0 3 4 }   ( 4 2 0 )      ( 0 2 4 )
6    3      { 1 2 3 }   ( 4 2 1 )      ( 0 2 3 )
7    2      { 1 2 4 }   ( 4 3 0 )      ( 0 1 4 )
8    1      { 1 3 4 }   ( 4 3 1 )      ( 0 1 3 )
9    0      { 2 3 4 }   ( 4 3 2 )      ( 0 1 2 )

// return the mth lexicographic element of combination C(n,k)
public Combination Element(long m) 
{
  long[] ans = new long[this.k];

  long a = this.n;
  long b = this.k;
  long x = (Choose(this.n, this.k) - 1) - m; // x is the "dual" of m
 
  for (long i = 0; i < this.k; ++i)
  {
    ans[i] = LargestV(a,b,x); // largest value v, where v < a and vCb < x    
    x = x - Choose(ans[i],b);
    a = ans[i];
    b = b-1;
  }

  for (long i = 0; i < this.k; ++i)
  {
    ans[i] = (n-1) - ans[i];
  }

  return new Combination(this.n, this.k, ans);
} // Element()

// return largest value v where v < a and  Choose(v,b) <= x
private static long LargestV(long a, long b, long x)
{
  long v = a - 1;



Let's walk through how the Element() method calculates and returns the [6] lexicographic combination element for n = 7 and k
= 4, which is { 0, 1, 3, 6 }. Element() starts by creating an array of size 4 to hold the digits of our answer. Next, we compute the
dual index of the input parameter m, making use of the fact that the duals sum to Choose(n,k) - 1. Because m is 6, the dual index
x is 34 - 6 = 28. Now we will compute the combinadic of 28. Most of the work is done with a strange little helper function,
LargestV(). We know the basic structure of the combinadic of 28 will be ( c1, c2, c3, c4 ) where:

So, we need to find values c1, c2, c3, and c4. The LargestV(a,b,x) function returns the largest value v that is less than a given
value a, and so that Choose(v,b) is less than or equal to x. Believe me, this made my head spin when I was first working out the
details. To compute c1, we call LargestV(7,4,28), the largest value v less than 7, so that Choose(v,4) is less than or equal to 28. In
this case, LargestV() returns 6 because Choose(6,4) = 15, which is less than 28. The value 6 is the first number c1, of the
combinadic.

Now to compute the c2 value, we subtract 15 from 28 and see that we now only have 13 left to consume because we used up 15
for the c1 coefficient. We call LargestV(6,3,13), which returns 5 and note that Choose(5,3) is 10, leaving us with 3. The
combinadic is now ( 6 5 ? ? ). Next, we call LargestV(4,2,10) and get 3 for c3, noting that Choose(3,2) is 3, leaving us with 0 left.
Finally, to compute c4, we call LargestV(3,1,0), which returns 0.

Now that we have the combinadic ( 6 5 3 0 ) in our answer array, we map it to a combination element by subtracting each of the
combinadic values from n-1 = 6, giving us ( 0 1 3 6 ). Finally, we feed our answer array to our auxiliary constructor to convert it
into a combination object and get { 0, 1, 3, 6 }—combination element [6] in lexicographical order for n = 7 and k = 4. Whew!

Notice that the LargestV(a,b,x) function calls the Choose(n,k) method in such a way that n can be less than k. This is why we
allow this possibility in the Choose() method, and also in the Combination constructor.

To summarize, an important fundamental operation on combinations is generating the mth lexicographic combination element
for given n and k values. A naive approach that iterates from the first element up to the mth element is not always effective
because the number of elements can be very large. I discovered that the little-known combinadic of a number could be used to
quickly generate the mth combination element.

Discussion
The idea of the combinadic of a number is closely related to the factoradic of a number. In an MSDN article
(http://msdn.microsoft.com/library/enus/dnnetsec/html/permutations.asp) on mathematical permutations (all possible orderings
of a set of integers from 0 to n-1), I describe how the factoradic of a number is a representation based on factorials. For example,
the factoradic of integer value 53 is ( 2 0 1 3 ) because:

The factoradic can be used to generate the mth permutation element for a given n in a way that is analogous to the way the
combinadic can be used to generate the mth combination element. I have observed a general theme that when you are trying to
map from an index value to a vector value, alternate number representations are often the key to an elegant solution.

Although the combinadic can calculate the mth combination element much faster than an iterative solution for large values of m,
my Element() method was not coded for optimum speed. The algorithm I implemented in this article was designed for clarity
rather than performance. In particular, I used a crude way to find the values of the combinadic. As you may recall, I started at n-1,
computed Choose(n-1,k) and if that result was greater than m, then I tried 1 less, and so forth until I found a value for the
combinadic. For large values of n, a binary search approach could improve performance. I could also have improved performance
by recasting the Element() method to eliminate calls to the Choose() and LargestV() helper methods.

While researching this article, I discovered that B. P. Buckles and M. Lybanon published an article and algorithm titled, "Algorithm
515: Generation of a Vector from the Lexicographical Index" in the June, 1977 issue of ACM Transactions on Mathematical
Software. I was not able to access the article online because it required a subscription. The article implements an alternative, but

           
  while (Choose(v,b) > x)
    --v;

  return v;
} // LargestV()

28 = Choose(c1,4) + Choose(c2,3) + Choose(c3,2) + Choose(c4,1)

53 = (2 * 4!)  +  (0 * 3!)  +  (1 * 2!)  +  (3 * 1!)

http://msdn.microsoft.com/library/enus/dnnetsec/html/permutations.asp


copyrighted algorithm in Fortran.
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